الرياضيات المتناهية الأمثلة

حل معادلة المصفوفة [[3,5],[1,2]]*[[x,0],[x+y,z+2]]=[[1,-5],[0,-2]]
خطوة 1
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
خطوة 1.2
اضرب كل صف في المصفوفة الأولى في كل عمود في المصفوفة الثانية.
خطوة 1.3
بسّط كل عنصر من عناصر المصفوفة بضرب جميع العبارات.
خطوة 2
Write as a linear system of equations.
خطوة 3
أوجِد حل سلسلة المعادلات.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.1.2
اطرح من .
خطوة 3.1.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.1
اقسِم كل حد في على .
خطوة 3.1.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.1.2.2.1.2
اقسِم على .
خطوة 3.1.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.2.3.1
اقسِم على .
خطوة 3.2
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
اضرب في .
خطوة 3.2.2.1.2
أضف و.
خطوة 3.3
احذِف أي معادلات صحيحة دائمًا من السلسلة.
خطوة 3.4
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
اطرح من كلا المتعادلين.
خطوة 3.4.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.1
اقسِم كل حد في على .
خطوة 3.4.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.4.2.2.1.2
اقسِم على .
خطوة 3.4.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.5
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.5.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1.1.1
طبّق خاصية التوزيع.
خطوة 3.5.2.1.1.2
اجمع و.
خطوة 3.5.2.1.1.3
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.2.1.1.3.1
اضرب في .
خطوة 3.5.2.1.1.3.2
اجمع و.
خطوة 3.5.2.1.1.3.3
اضرب في .
خطوة 3.5.2.1.1.4
انقُل السالب أمام الكسر.
خطوة 3.5.2.1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.5.2.1.3
اجمع و.
خطوة 3.5.2.1.4
اجمع البسوط على القاسم المشترك.
خطوة 3.5.2.1.5
اجمع البسوط على القاسم المشترك.
خطوة 3.5.2.1.6
اضرب في .
خطوة 3.5.2.1.7
أضف و.
خطوة 3.6
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 3.6.2
اطرح من كلا المتعادلين.
خطوة 3.7
استبدِل كافة حالات حدوث بـ في كل معادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
استبدِل كافة حالات حدوث في بـ .
خطوة 3.7.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.7.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.7.2.1.1
اجمع البسوط على القاسم المشترك.
خطوة 3.7.2.1.2
بسّط العبارة.
انقر لعرض المزيد من الخطوات...
خطوة 3.7.2.1.2.1
اضرب في .
خطوة 3.7.2.1.2.2
أضف و.
خطوة 3.7.2.1.2.3
اقسِم على .
خطوة 3.8
اسرِد جميع الحلول.